
Diffusion weighted imaging provides signal proportional to the molecular diffusion of water. 
With cytotoxic edema, influx of water from the extracellular to intracellular space results in 
restricted movement of water molecules. 

DWI provides highly sensitive detection of acute infarction and it is reliable in differentiating 
acute stroke form other disease that mimic acute stroke clinically and on conventional MR 
images. 

Becomes positive in animal models within 10 minutes to 2 hours after vascular occlusion. In 
animals, it normalizes within 2 days. In humans, restricted diffusion has been noted as early as 
30 minutes after an acute neurologic deficit; the ADC continues to decrease reaching the nadir at 
8-32 hours and remains reduced for 3-5 days. Early reperfusion may alter the time course (some 
pseudonormalize at 1-2 days); in spite of this the tissue characterized by an initial reduced ADC 
nearly always undergoes infarction. 

DWI with PWI is useful in predicting final infarct size and patient outcome.   PWI can give 
information about the relative cerebral blood volume, relative cerebral blood flow, mean transit 
time, and time to peak.  PWI >DWI  = tissue at risk; DWI >PWI = sometimes seen with early 
reperfusion. 

Reversibility and Prediction of outcome: in humans, neither a threshold time nor threshold ADC 
for reversibility have been established. Nearly all lesions characterized by restricted diffusion 
progress to infarction. Some case reports of reversible lesions (TIA, hemiplegic migraine, TGA, 
venous thrombosis, status). 

 



181Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2009 Sep; 153(3):181–187.
© D. Sanak, D. Horak, R. Herzig, P. Hlustik, P. Kanovsky

THE ROLE OF MAGNETIC RESONANCE IMAGING 
FOR ACUTE ISCHEMIC STROKE 

Daniel Sanaka, David Horakb, Roman Herziga, Petr Hlustika, Petr Kanovskya

 Stroke Centre,
a Department of Neurology and 
b Radiology, Faculty of Medicine and Dentistry Palacky University Olomouc and University Hospital, Olomouc, Czech 

Republic
e-mail: daniel.sanak@fnol.cz 

Received: March 3, 2009; Accepted: July 14, 2009

Key words: Ischemic stroke/Thrombolysis/Magnetic resonance imaging/Mismatch 

Background: Although computed tomography (CT) is still considered to be the gold standard of brain imaging 
before thrombolysis, new reperfusion strategies in acute ischemic stroke lead to more extensive use of magnetic reso-
nance imaging (MRI). 

Methods and results: Diffusion- (DWI) and perfusion-weighted (PWI) MRI with MRI angiography are considered 
the most important examinations in diagnosis of acute ischemic stroke before reperfusion therapy. The effort to extend 
strict therapeutic time window resulted in the PWI/DWI mismatch concept, established to identify the presence of 
ischemic penumbra. Nevertheless, a lack of standards for methodology and analysis and existence of different alterna-
tive interpretations of such mismatch still present significant limitations of its use in routine clinical practice. 

Conclusion: MRI allows accurate diagnosis of the infarct lesion, detection of cerebral arterial occlusion or significant 
stenosis with evaluation of actual collateral flow and may also display certain reversible ischemic changes. However, 
the main objective for MRI still remains: improvement of non-invasive rapid and accurate identification of brain tissue 
at risk for infarction, which may be salvaged by safe and effective reperfusion therapy. 

Thrombolysis is presently the only standardized causal 
therapy for acute ischemic stroke and is considered a safe 
and effective treatment method1. Urgent brain imaging is 
required to exclude other causes of neurological symp-
toms before thrombolysis. Computed tomography (CT) 
of the brain, which was used in most previous clinical 
trials is largely performed in routine clinical practice and 
is still recommended as a gold imaging standard before 
reperfusion therapy1. Reliable exclusion of intracerebral 
(ICH) or subarachnoidal hemorrhage (SAH) as the cause 
of acute neurological symptoms before rt-PA treatment is 
the main benefit of CT. On other hand, the role of CT in 
detection of acute ischemic changes may be at least prob-
lematic. At the beginning of the “CT era” in the 1980s, 
CT findings were considered negative within the first 
12 hours from stroke onset regarding presence of early 
ischemic changes2, 3. Thanks to the availability of new CT 
machines with high spatial resolution in the last decades, 
a widely respected consensus concerning ability of CT to 
detect certain (ischemic) changes on brain scans within 
first 6 hours from stroke onset was created by the neuro-
radiological community. Nevertheless, the sensitivity of 
detection of these “early changes” highly varies (between 
53 to 92 %) and CT is not able to differentiate the age of 
these changes4-6.

Therapeutic strategies for acute ischemic stroke 
changed dramatically during the last few years and ad-
equate brain imaging has become crucial for optimal 
patient selection for specific reperfusion treatment. The 

fact that up to 20 % of diagnoses of ischemic stroke at 
patient admission are incorrect and that even some of 
these patients with symptoms mimicking stroke are treat-
ed with rt-PA documents very clearly the importance and 
necessity of accurate stroke diagnosis7, 8. This is where 
magnetic resonance imaging (MRI) became useful. Until 
the beginning of 1990s, MRI was reserved mainly for the 
subacute phase of ischemic stroke, because the most 
widely available conventional sequence – T2-weighted 
imaging – shows infarct lesions only after 6-8 hours as 
a hyperintense zone9, 10 and a T1-weighted sequence even 
later and as a hypointense lesion11. Conventional MRI 
offered mainly higher resolution capability for detection 
of relatively smaller infarcts, especially in the brain stem 
and cerebellum compared to CT12, 13. The use of urgent 
MRI in acute stroke was also limited for generally prevail-
ing pessimism for low sensitivity in the detection of acute 
ICH or SAH compared to CT. Fortunately, this pessimism 
disappeared completely when more accurate MRI ma-
chines and new echoplanar sequences (T2*) capable of 
safely detecting brain hemorrhage became established in 
clinical practice14-17.

Development of MRI echoplanar techniques facilitat-
ed the creation of multiparametric MRI protocols contain-
ing several different sequences able to detect accurately 
not only the infarct lesion, but also significant arterial 
occlusion or stenosis in the circle of Willis, and permit-
ted evaluation of the actual collateral flow and reversible 
ischemic changes. These multiparametric protocols were 
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Fig. 1.  DWI sequence (b-1000), acute ischemic stroke in 
territory of left middle cerebral artery; 85 min-
utes from stroke onset.

Fig. 2A. FLAIR sequence, acute large hypertonic intrac-
erebral hemorrhage in left basal ganglia and cap-
sula interna; 100 minutes from symptoms onset.

Fig. 2B. FLAIR sequence, small demyelinization lesion 
in right parietal cortex, clinical symptoms: left-
sided moderate central hemiparesis persists 
125 minutes .

used in several clinical trials to assess their efficacy and 
benefits for indication of reperfusion therapy18-22. 

Several MRI sequences, their imaging and technical 
specifications and mainly their clinical benefit for acute 
stroke diagnosis will be discussed next. 

Diffusion-weighted imaging (DWI) 
DWI is crucial for the detection of acute ischemic 

changes. During ischemic neuronal damage, prompt 
failure of high-energetic cellular membrane metabolism 
occurs with membrane pump destruction. This leads to 
decreased diffusion of H2O molecules in the context of 
membrane permeability decrease or to H2O molecules 
locked in the cells in the course of developing cytotoxic 
edema. The decrease of diffusion of H2O molecules is 
quantified using apparent diffusion coefficient (ADC) 
and leads in this case to its decrease represented as a hy-
pointense zone on an ADC map and a hyperintense lesion 
on DWI scans (Fig. 1). These hyperintense changes repre-
sent, according to majority oponion, immediate irrevers-
ible ischemic neuronal damage23-27, namely within several 
minutes after arterial occlusion28, 29. In some cases, if the 
cerebral blood perfusion is very rapidly restored, these 
changes could be potentially reversible; e.g., in patients 
treated with thrombolysis30-34 or in the case of transient 
ischemic attack (TIA)35. DWI is much more sensitive and 
accurate in detection of acute ischemic changes compared 
to conventional CT36, 37. Parameter b-value determines the 
sensitivity in measurement of diffusion weighting. B-value 
is calculated from the power and the duration of diffusion 
gradients and from the time interval between gradient 
pulses. Higher b-value means higher sensitivity for detec-
tion of diffusion changes. In addition to diffusion meas-
urement, quantification of ADC and creation of an ADC 

map are also possible. In the ADC map, single voxels 
represent quantitative diffusion measurement. The zone 
of low diffusion appears hypointense and, by contrast, 
areas of high H2O molecule diffusion are hyperintense 
(cerebro spinal fluid) on this map. Significant ADC re-
duction (about 40-50 %) representing infarct changes 
correlates very well with histopathological findings38, 39. 
DWI is also useful in patients with acute neurological 
symptoms and multiinfarct brain lesions of different age; 
it can identify the acute lesion which corresponds to the 
present clinical symptoms40, 41. 
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Fig. 3. EPI-DWI sequence (b-0), intracerebral hemor-
rhage (hypointense) in infarct lesion (hyperin-
tense) in right cortex.

Fig. 4A. 3D TOF MRA sequence, occlusion of intracra-
nial portion of right internal carotid artery.

Fig. 4B. 3D TOF MRA sequence, occlusion of left middle 
cerebral artery (M1).

Quantification of initial infarct volume on DWI may 
be used for prediction of clinical outcome in patients with 
stem occlusion of middle cerebral artery (MCA) treated 
with intravenous/intra-arterial thrombolysis. The results 
of our retrospective analysis showed that patients with 
initial infarct volume over 70 ml had significantly higher 
probability of poor clinical outcome after thrombolysis42. 

Fluid Attenuated Inversion Recovery (FLAIR)
This sequence uses so-called preparation inverse 180° 

radiofrequency pulse and a long-term inverse time for 
reduction of cerebrospinal fluid signal. The resulting T2-
weighted images with hypointense cerebrospinal fluid al-
low better detection of hyperintense pathological lesions 
localized closely to external fluid cisterns or ventricles. 

Infarct lesion is visible on FLAIR as a hyperintense 
zone not earlier than 5 to 6 hours from stroke onset, when 
vasogenic edema develops and water content increases sig-
nificantly in the damaged tissue. FLAIR may differentiate 
subacute and chronic ischemic changes and other types 
of non-ischemic etiology of neurological symptoms (e.g. 
tumor, multiple sclerosis etc.)43-46 (Fig. 2).

T2* 
T2* (star) is a very important sequence for detection 

of hemorrhage. Degradation products of hemoglobin 
(deoxyhemoglobin and hemosiderin) have paramagnetic 
properties and cause local inhomogeneity of the magnet-
ic field, which results in signal loss on T2* scans (dark 
lesion)47. T2* may also detects microbleeds and early 
hemorrhagic transformation of brain infarct48, 49. These 
findings exclude the patients from eventual thrombolytic 
therapy. Sometimes, for practical reasons of shortening 
the examination time by about 3 to 4 minutes the “clas-
sic” T2* may be replaced by a set of gradient echo EPI 

images with b = 0, which is part of some EPI-DWI trace 
sequence protocols42. These sequences have lower spatial 
resolution, but they are highly sensitive for detection of 
acute hemorrhage (Fig. 3). 

Magnetic Resonance Angiography (MRA)
MRA is used to display the arteries of the circle of 

Willis using “time of flight” (TOF) technique50. The TOF 
technique detects “new flowing“ non-saturated spins in 
a predefined excited stationary layer during the blood 
flow. These protons are displayed as a hyperintense zone 
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on a hypointense background. Maximum intensity pro-
jection (MIP) results in an angiogram51. Obtained basic 
sublayers may be visualized directly into 2D scans or they 
may be processed in three-dimensions into high-quality 
3D image of the Willis circle, which shows arterial occlu-
sion or significant stenosis52-55 (Fig. 4). 

The reliability of 3D TOF MRA was repeatedly 
confirmed by comparison with digital subtraction an-
giography (DSA), CT angiography (CTA) and duplex 
sonography in past56-57. 

3D TOF MRA may also display the collateral flow 
in occlusion of MCA stem or internal carotid artery 
(ICA)58, 59. A possible limitation is the less accurate imag-
ing of smaller and more peripheral branches of cerebral 
arteries compared to DSA and CTA55, although MRA 
provides enough information about cerebral arteries for 
accurate diagnosis of ischemic stroke60, 61.

Ischemic stroke may also be caused by pathology in 
the extra-cranial portion of carotid and vertebral arteries, 
most commonly by occlusion or significant stenosis of 
the internal carotid artery (ICA). For this reason, MRA 
of extra-cranial portion of cerebral arteries is added to 
the examination protocol in some stroke units. 3D TOF 
MRA is used on a standard basis and its accuracy was 
also evaluated using of comparison DSA and CTA62. 
A disadvantage of non-contrast MRA is the long duration 
of the examination, which is typically about 10 minutes. 
Therefore a different MRA technique using intravenous 
administration of contrast paramagnetic agent (contrast-
enhanced magnetic resonance angiography, CE-MRA) 
began to be used in the last decade. CE-MRA significantly 
reduces the examination time and moreover, is capable 
of very accurate quantification of the degree of stenosis, 
which is comparable to invasive DSA thanks to using spe-
cial techniques with high spatial resolution and special 
post-processing software63-67. 

Perfusion-weighted imaging (PWI) 
PWI represents a set of techniques, which can detect 

hemodynamic changes in brain tissue on a microvascular 
level. A paramagnetic contrast agent (gadolinium) is ap-
plied as an intravenously administrated bolus. Subsequent 
signal changes, which are caused by contrast agent pas-
sage through brain tissue, are detected by ultra-fast MR 
sequences68. The most visible signal changes are caused 
by difference of contrast agent concentration in extra/
intravascular space. Gradient echo-planar imaging (EPI) 
is mostly used in PWI. 

The passage of contrast agent through brain causes 
signal decrease. In ischemic tissue perfusion is decreas-
ing and therefore the contrast agent has minimal or no 
concentration in this ischemic zone and signal is relatively 
increased69. Although the dynamics of signal changes pro-
vide some information about cerebral microcirculation, 
the relative signal loss does not correlate directly with 
any physiological parameter. The derivation of a “sig-
nal – time” curve and “concentration of contrast agent 
– time” curve acquired during first passage of contrast 
agent are needed to calculate (semi-) quantitative param-
eters of cerebro vascular hemodynamics69. The results of 

these complicated derivations are several hemodynamic 
parameters: cerebral blood flow (CBF), cerebral blood 
volume (CBV). Two other parameters are derived from 
the “concentration of contrast agent – time” curve. First is 
the “mean transit time” (MTT); time interval when signal 
returns to baseline after passage of the contrast agent. 
Second is the “time to peak” (TTP); time when the con-
centration of gadolinium becomes maximal in the region 
of interest70. These parameters are mostly used in clinical 
practice only as qualitative indices of cerebral perfusion in 
the form of color maps because of highly time-consuming 
post-processing calculations of parameter values71.

Ischemic penumbra and the mismatch concept 
Time is one of the most important limitations for more 

extensive use of intravenous thrombolysis in acute stroke 
patients. Recently updated guidelines published on the 
internet72 allow the administration of IVT within first 
4.5 hours from stroke onset based on results from ECASS 
III trial73, however such rt-PA administration is off the 
current European labeling. Nevertheless, imaging tech-
nologies provide information about the presence of the 
potentially salvageable ischemic brain tissue until several 
hours from stroke onset74-76. This zone is called ischemic 
penumbra and represents brain tissue, which is at risk 
for infarct growth and which is potentially salvageable by 
early recanalization therapy77. Biochemically, penumbra is 
defined as a zone of suppressed protein synthesis caused 
by blood hypoperfusion, but without irreversible energetic 
damage with ATP depletion. Tissue which is only hypo-
perfused without suppression of protein synthesis is not 
at risk for infarct growth. Logically, brain tissue should be 
salvaged before the onset of decrease in protein synthe-
sis and of ATP depletion. However, there is no routinely 
available technology, which is capable to display these 
biochemical changes. Presently, only positron emission 
tomography (PET) can detect accurately the real ischemic 
penumbra using radioactive oxygen (15O) with short half-
time78-80. PET penumbra is defined as zone of critical de-
crease of blood flow, but with preserved O2 consumption 
with evidence of high value of O2 tissue extraction81. 

The development of new MRI techniques encouraged 
also the identification of ischemic penumbra using MRI. 
The concept of PWI/DWI mismatch appeared as a result 
of MRI technical improvement. Mismatch was defined as 
a difference between PWI lesion surface area and hyperin-
tense DWI zone surface area on respective MRI scans and 
this surface area difference should represent tissue at risk 
for infarct growth82-85. Patients with ischemic penumbra 
presented on MRI may have higher profit from thrombo-
lytic therapy several hours after stroke onset compared to 
patients without detected penumbra86-88.

The frequent use of this mismatch concept may in-
dicate its great reliability and accuracy for decision to 
perform thrombolysis beyond standard 3-hour therapeu-
tic window. However, several facts should be discussed 
because they may challenge this concept. 

Although hyperintense changes displayed on DWI 
are still considered to be a marker of irreversible dam-
age of brain tissue23-27 present immediately after arterial 
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occlusion28, 29, cases of significant DWI lesion regression 
are repeatedly reported in patients with rapidly restored 
cerebral perfusion after thrombolysis30-34 or in the case 
of TIA35.

Furthermore, several aspects of PWI are still being 
discussed: choice of the most accurate and optimal („cost-
effective“) MRI technique for PWI, assessing a reliable 
post-processing method for quantification of hemody-
namic parameters, which better characterize tissue at 
risk of infarction – penumbra89-91; PWI cannot differenti-
ate benign oligemia and real penumbra reliably92. Non-
standardized design of the corresponding MRI sequences 
still limits objective interpretation of the achieved results. 
Not only several doses of contrast agent, but also different 
sequence techniques and different methods of parameter 
measurements are used during PWI examination and it 
is still not clear which of them should be used in routine 
clinical practice93. Analogously, the concept of PWI/DWI 
mismatch is still largely being discussed. Some authors 
consider it as an approximation of the real penumbra77, 
different definitions and methods of mismatch quantifi-
cation are problematic for other authors93. At present, 
several definitions are established; some authors defined 
mismatch as the absolute difference between PWI and 
DWI lesion82, 83, 94, others as the difference between 50 % of 
PWI lesion and DWI lesion95. The mismatch volume was 
measured in most trials directly on MRI scanner monitor 
and some evaluated the volume only visually84, 85. These 
facts which limit routine use of mismatch lead to  creation 
of other new concepts. One of them is the mismatch be-
tween the degree of neurological deficit in NIHSS and 
the initial infarct volume on DWI – clinical-diffusion mis-
match (CDM). CDM was defined as presence of NIHSS 
≥ 8 and infarct volume on DWI  25 ml95. CDM was com-
pared to PWI/DWI mismatch and a significant agreement 
with high specificity and predictive value was found96. 
Contrariwise, Lansberg et al. reported that clinical im-
provement after IVT performed in patients between 3 and 
6 hours from stroke was significantly correlated to the 
presence of PWI/DWI mismatch, but not to presence of 
CDM97. Our retrospective analysis of 79 patients treated 
with IVT within 3 hours showed better clinical results in 
patients with present CDM before thrombolysis98.

CONCLUSION

At present, MRI allows accurate diagnostics of acute 
brain infarct lesion (actual size, localization), detection 
of occlusion or significant arterial stenosis and evaluation 
of actual collateral flow. MRI can also detect some revers-
ible ischemic changes. This information may help better 
identify the patients with probably higher benefit from 
thrombolysis, especially beyond the standard therapeutic 
time window74-77, 86-88, 98.

However, the main objective for MRI still remains: the 
improvement of non-invasive rapid and accurate identifi-
cation of brain tissue at risk for infarction, which may be 
salvaged by safe and effective reperfusion therapy. 
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