Cranial Neuropathies

Maria Baldwin, MD
Assistant Professor
Epilepsy, Department of Neurology
Loyola University Medical Center, Maywood, IL
mbaldwin@lumc.edu

Lecture Content: Neuropathies

- Olfactory
- Optic
- Oculomotor
- Trochlear
- Trigeminal
- Abducens
- Facial
- Vestibulocochlear
- Glossopharyngeal
- Spinal accessory
- Hypoglossal

Question 1: A 27 year old female presents with six months of right shoulder weakness. She lost consciousness 6 months ago and landed on a radiator pipe, sustaining a burn injury to her right lateral neck. She can raise her arm to 90° but no higher. There is unilateral scapular winging with arms abducted. What is the affected muscle or muscles?

A. Serratus anterior
B. Trapezius
C. Deltoid
D. Rhomboid

Question 2: A 37 year old male presents with left facial weakness involving the forehead and lower face and reduced taste sensation. Loud sounds are bothersome. What treatment should be offered?

A. Aspirin 81 mg daily
B. Acyclovir only
C. Acyclovir and prednisone
D. Prednisone only
Question 3: A 43 year old male presents with left-sided weakness and neglect. His examination is notable for mild right ptosis. Eyes are midposition. The right pupil is reduced in diameter compared to the left. What muscle is most likely involved?

A. Levator palpebrae
B. Tarsal (Müller’s muscle)
C. Orbicularis oris
D. Superior rectus

Question 4: A 73 year old male presents with right shoulder droop and weakness of head turning, difficulty swallowing, and softening of speech. He reports decreased taste sensation. There is unilateral palatal droop noted on examination. Where is the most likely site of injury?

A. Median midbrain
B. Rostral pons
C. Lateral medulla
D. Jugular foramen

Question 5: A 41 year old Caucasian male presents for acute onset hearing loss. Examination is notable for bilateral keratitis and an ataxic gait. What is the most likely diagnosis?

A. Ramsay-Hunt syndrome
B. Tolosa-Hunt syndrome
C. Multiple sclerosis
D. Cogan’s syndrome

Olfactory Nerve

- Pathway
 - Olfactory receptors located in wall of the nasal cavity
 - Penetrate cribiform plate of ethmoid bone -> olfactory bulb
 - 2nd-order neurons course posteriorly as the olfactory tract
 - Crossed and uncrossed
Olfactory Nerve (cont.)

- **Pathway**
 - Fibers go to
 - Frontal lobe
 - Temporal lobe
 - Terminate in the amygdala nucleus, hypothalamus, septal nuclei
 - Only sensory nerve that avoids the thalamus
 - Cortical representation is bilateral
 - Unilateral lesions distal to the decussation do not produce anosmia

Olfactory Neuropathies

- **Anosmia-lack of smell**
 - Common cold
 - Most common cause of bilateral transient anosmia
 - Head trauma
 - Damage to fibers over cribriform plate
 - Back/side impact more damaging than frontal impact
 - Closed head injury can produce impairments of recognition despite preserved detection
 - Neurodegenerative disease
 - Sensitive as an initial deficit
 - Alzheimer’s, Parkinson’s, Huntington’s disease
 - Other
 - Cystic fibrosis and adrenal insufficiency

Optic Nerve

- **Course**
 - 50 mm long with 4 parts
 - Intraocular (nerve head)
 - Intraorbital
 - Intracanalicular
 - Intracranial
 - Optic neuropathies
 - Anterior ischemic optic neuropathy (AION)
 - Posterior ischemic optic neuropathy (PION)
 - Optic neuritis
 - Leber’s optic neuropathy
Optic Neuropathy

- Anterior ischemic optic neuropathy (AION)
 - More likely in those >50, acute onset, minimal pain, limited recovery, altitudinal defect
 - Unilateral optic disc swelling
 - 2 types
 - Non-arteritic – Most common, painless, acute, altitudinal
 - Arteritic – Greater than 70 years of age
 - Usually giant cell arteritis
 - Associated with HTN, DM, OSA, hypercholesterolemia
- Posterior ischemic optic neuropathy (PION)
 - Similar to AION but ischemia behind the optic disc
 - Do not appreciate optic disc swelling
 - Bilateral PION commonly seen with cardiac and spinal surgeries
 - Surgeries greater than 6 hours
 - Patients with DM and carotid atherosclerosis

Optic Neuropathy

- Optic neuritis
 - Demyelinating inflammatory condition
 - More likely in those <40, subacute onset, painful, good recovery
 - Four subtypes
 - Retrobulbar neuritis: optic nerve
 - Papillitis: optic disc
 - Perineuritis: optic nerve sheath (sparing the nerve)
 - Infection (syphilis)
 - Sarcoid
 - Neuroretinitis: swelling of the nerve & macula

Optic Neuritis

- Clinical features
 - Vision loss
 - Gradual—occurs hours to days
 - Nadir within 1-2 weeks, recovery within 2-4 weeks, 6-12 months for nerve to fully heal
 - 2/3rds have 20/20 vision once recovered
 - Eye pain
 - 87% report pain, worse with movement
 - Loss of color vision
 - 88% with abnormal color vision (usually red and green)
 - Relative APO
 - Persist in >90% of cases

Optic Neuritis

- Differential diagnosis
 - Commonly seen with inflammatory/autoimmune disease
 - Multiple sclerosis
 - Neuromyelitis optica
 - Syphilis
 - Cat scratch disease
 - Sarcoidosis
 - Lupus

Optic Neuritis

- MRI
 - GdE fat saturated T1-weighted MRI of the orbits best sequence
 - GdE shows enhancement in 95% of cases
 - Rarely occurs in AION
 - Those without concomitant brain lesions have a 25% risk of MS vs. 72% with lesions
Optic Neuropathies
- Leber optic neuropathy
 - Genetic cause of optic neuropathy
 - Point mutation in mitochondrial DNA
- Adolescent males
- Painless vision loss over weeks to months
- Cardiac anomalies: atrioventricular conduction pathway defects (Wolf-Parkinson-White)

Oculomotor Nerve
- Function
 - Extraocular muscles
 - Superior rectus
 - Medial rectus
 - Inferior rectus
 - Inferior oblique
 - Levator palpebrae
 - Constricts the pupil
 - Accommodates
 - Converges

Oculomotor Nerve Pathway
- Exits medial midbrain between midbrain & pons
- Runs between the SCA and PCA
- Then parallel to the posterior communicating artery
 - Parasympathetic fibers ride atop the nerve
- Through cavernous sinus
- Exits at superior orbital fissure
 - Splits into 2 divisions
 - Superior division
 - Inferior division

Oculomotor Neuropathies
- Categorized by location
 - Nuclear lesions
 - Parinaud’s syndrome
 - Fascicular lesions
 - Weber
 - Claude
 - Benedikt
 - Subarachnoid lesions
 - Carotid sinus lesions
 - Tolosa Hunt syndrome

Classic 3rd nerve palsy
- Eye is “down & out”
- Dilated pupil
- Paralysis of accommodation (cycloplegia)
- Ptosis
Oculomotor Neuropathies

Nuclear lesions
- Parinaud’s syndrome
 - Lesion location
 - Dorsal midbrain
 - Periaqueductal grey
 - Clinical features
 - Supranuclear upgaze paralysis
 - Setting sun sign
 - Convergence and Eyelid retraction
 - Collier’s sign

Causes
- Pinealomas
- Multiple sclerosis
- Stroke
- Hydrocephalus
 - VP shunt failure

Lesion location
- Dorsal midbrain
- Periaqueductal grey

Clinical features
- Supranuclear upgaze paralysis
- Setting sun sign
- Convergence and Eyelid retraction
 - Collier’s sign

Oculomotor Neuropathies

Fascicular lesions
- Weber’s syndrome
 - Lesion location
 - Base of midbrain
 - CNIII
 - Cortical spinal tracts
 - Clinical features
 - Ipsilateral 3rd nerve palsy
 - Contralateral hemiplegia

Lesion location
- Base of midbrain
- CNIII
- Cortical spinal tracts

Clinical features
- Ipsilateral 3rd nerve palsy
- Contralateral hemiplegia

Oculomotor Neuropathies

Claude syndrome
- Lesion location
 - CNIII
 - Red nucleus
 - Brachium conjunctivum
- Clinical symptoms
 - Ipsilateral 3rd nerve palsy
 - Contralateral ataxia
 - Contralateral tremor

Red nucleus

Oculomotor Neuropathies

Benedikt syndrome
- Lesion Location
 - CNIII
 - Red nucleus
 - Cortical spinal tract
- Clinical features
 - Ipsilateral 3rd nerve palsy
 - Contralateral tremor
 - Contralateral hemiplegia

Red nucleus

Spinal tracts
Oculomotor Neuropathies

Subarachnoid lesions
- **Compressive lesions**
 - Tumors, aneurysms
 - Dilated, unresponsive pupil
 - Absence of an affected pupil with complete motor paresis almost always excludes an aneurysm
 - Posterior communicating aneurysm is the most common aneurysm to cause a CN IIIrd nerve palsy
 - Uncal herniation
 - Hutchinson pupil
 - Papillary dilatation associated with poor response to light but preserved convergence
 - Ischemic lesions
 - Pupil sparing
 - Usually resolves in 3-6 months
 - Diabetes, giant cell arteritis

Cavernous sinus lesions
- Tolosa-Hunt syndrome
 - **Clinical Features**
 - Episodic orbital pain
 - Episodic paralysis of either or all of CN 3, 4, 6
 - **Diagnosis**
 - Clinical history
 - Granuloma seen on MRI or biopsy
 - ESR/CRP elevated
 - CSF normal
 - Other causes excluded
 - **Treatment**
 - Sensitive to high dose steroids

Trochlear Nerve

Function
- Innervates superior oblique muscle
 - Depresses, intorts and abducts the eye

Pathway
- Nucleus at level of the inferior colliculus
- Exits midbrain dorsally & decussates
- Runs along undersurface of tentorium
- Along the wall of the cavernous sinus
- Enters orbit through superior orbital fissure
- Cranial nerve with the longest course (75 mm)
Trochlear Neuropathies

- Incomitant hypertropia
 - Clinical features
 - Vertical diplopia
 - Worse with adduction and downgaze
 - Head tilting
 - Hypertropia (elevated eye)
 - Occurs on side of the palsied nerve
 - Pts unconsciously tilt head away from the palsy
 - Worse with lateral gaze to opposite side
 - Head tilt to same side (Bielschowsky test)
 - Downgaze
 - Weakness of down gaze

Trochlear Neuropathies

- Congenital palsy
 - Most common cause in children
 - Decompensation of congenital palsy should be suspected in all adults with new onset 4th nerve palsy

- Head trauma
 - Most common acquired cause

Trigeminal Nerve

- Function
 - Innervates muscles of mastication: Temporalis, masseter, lateral and medial pterygoids
 - Other muscle groups: Tensor tympani, veli palatini, myohyoid and anterior belly of the digastric muscles
 - Sensation of face, eye, nasal and oral cavities

- Pathways
 - Motor nucleus
 - Medial to main sensory nucleus
 - Exits foramen ovale

Trigeminal Nerve

- Pathways
 - Sensory bodies in trigeminal ganglion (in petrous bone, lateral to cavernous sinus)
 - 3 divisions
 - Ophthalmic (superior orbital fissure)
 - Maxillary (foramen rotundum)
 - Mandibular (foramen ovale)
 - Central processes
 - Synapse within main sensory nucleus
 - Synapse within spinal nucleus
 - Descend to different levels of the pons, medulla or cervical spine
 - Secondary neurons project to VPM-cortex
Trigeminal Neuropathies

- Trigeminal neuralgia (IHS criteria)
 - Paroxysmal brief attacks of pain involving one or more divisions of the trigeminal nerve
 - Pain has at least one characteristic
 - Intense, sharp, superficial, stabbing
 - Precipitated from trigger zones or trigger factors
 - Attacks are stereotyped in the individual patient

- Classical trigeminal neuralgia
 - No clinically evident neurological deficit
 - No other disorder to explain symptoms

- Symptomatic trigeminal neuralgia
 - Causative lesion is found other than a vascular compression

Trigeminal Neuralgia

- Basic facts
 - Maxillary branch most commonly affected
 - Female > male
 - Peak incidence ages 60-70
 - Unusual before age 40

- Etiologies
 - Multiple sclerosis
 - Schwannoma
 - Ectopic loop (SCA, ICA)
 - AV malformation
 - Meningioma
 - Tortuous basilar
 - Bony deformity
 - Primitive trigeminal artery
 - Charcot-Marie-Tooth
 - Saccular aneurysm

Trigeminal Neuralgia

- Treatments
 - Medicines
 - Carbamazepine (200 mg-1200 mg/qd) - established as effective
 - Oxycarbazepine (600 mg-1800 mg/qd) - probably effective
 - Baclofen, lamotrigine - possibly effective
 - Topical ophthalmic agents - probably ineffective
 - Surgical options
 - Percutaneous procedures on gasserian ganglion
 - Gamma knife and macrovascular decompression probably effective

Abducens Nerve

- Function
 - Innervates lateral rectus muscle
 - Abducts the eye

- Pathway
 - Nucleus in lower dorsal pons
 - Emerges between pons & medulla
 - Lateral cavernous sinus
 - Exits out superior orbital fissure
Abducens Neuropathies: Congenital

- Mobius syndrome
 - Horizontal gaze disturbance
 - Bilateral abducens palsies
 - Facial diplegia
 - Can be associated with
 - Limb abnormalities
 - Chest-wall abnormalities
 - Crossed eyes
 - Corneal erosions

- Duane’s syndrome
 - Aplasia of one or both CNVI nuclei
 - Lateral rectus palsy
 - Some limitation of adduction
 - Retraction of eyeball into socket on adduction
 - Poor convergence
 - Face turns to affected side to compensate for limited movements
 - Can be associated with other ocular, ear and systemic malformations

Abducens Neuropathies: Non-Congenital

- Millard-Gubler syndrome
 - Ipsilateral horizontal gaze palsy (CNVI)
 - Ipsilateral facial weakness (CNVII)
 - Contra lateral hemiparesis (cortical spinal tracts)

- Foville syndrome
 - Ipsilateral horizontal gaze palsy (CNVI)
 - Ipsilateral facial weakness
 - Contra lateral hemiparesis (cortical spinal tracts)
 - Contralateral sensory loss
 - Internuclear ophthalmoplegia

 - Result of AICA infarct commonly

Abducens Neuropathies: Internuclear Ophthalmoplegia (INO)

- Anatomy
 - Internuclear neurons exit the abducens nucleus
 - Cross midline and arise in the MLF
 - Terminate in the MR nucleus

- Clinical features
 - Inability to adduct one eye with contralateral nystagmus
 - Adduction with convergence movements are intact

 - Common causes
 - Multiple sclerosis
 - Vascular disorders
 - Head trauma

Facial Nerve

- Function
 - Muscles of facial movements
 - Other muscles
 - Stylohyoid muscle, posterior belly of the digastric, stapedius (dampens sounds)

- Taste
 - Anterior 2/3 of tongue

- Salivation and lacrimation
 - Parasympathetic component that innervates lacrimal, submandibular and sublingual glands

- Sensation
 - Posterior surface of the external ear and ear canal
Facial Nerve

- Motor pathways
 - Nucleus in ventrolateral pons
 - Fibers swing around CNV1
 - Exit lateral caudal pons
- Sensory pathways
 - Superior salivatory nucleus
 - Reticular formation of lower pons
 - Innervates smooth muscle and glands for lacrimation
 - Tractus solitarius
 - Cell bodies in the geniculate ganglion
 - Taste for anterior 2/3rds tongue

Facial Nerve

- Pathways
 - Superior salivatory nucleus
 - Tractus solitarius
 - Nervus intermedius
 - Motor nucleus fibers
 - Join in the internal auditory canal
 - Geniculate ganglion

Facial Neuropathy: Bell’s Palsy

- Incidence
 - Most common from ages 10-40yrs
- Symptoms
 - Pain behind ear
 - Hyperacusis
 - Facial weakness
 - Loss of taste
- Clinical course
 - 2/3rds recover spontaneously
 - 85% report improvement in about 3 weeks
 - 15% improvement within 3-6 months
- Treatment
 - Early treatment with prednisolone (25 mg BID) significantly improves the chances of recovery at 3 & 9 months
 - There is no evidence of a benefit of acyclovir in combination with prednisolone
 - Lancet neurology (2008)
 - Prednisolone (60 mg x5d then 10 mg x5) shortened the time to complete recovery in patients with Bell’s
 - Valacyclovir had no affect on recovery
Facial Neuropathies

- **Blepharospasm**
 - Repeated involuntary bilateral contractures of the orbicularis oculi muscles
 - Common causes
 - Idiopathic
 - Meige syndrome
 - Idiopathic blepharospasm and oromandibular dystonia
 - Sustained grimacing around the mouth, platysma contraction and sustained neck flexion
 - Multiple sclerosis
 - Multi-system atrophy

- **Hemifacial spasm**
 - Unilateral involuntary hyperactive dysfunction
 - Insidious onset of painless, arrhythmic, tonic or clonic intermittent spasms
 - Lesions near CP angle are the most common cause

Vestibulocochlear Nerve

- **Anatomy**
 - Function and pathways
 - Auditory nerve
 - Receives information from the cochlea (organ for hearing)
 - Vestibular nerve
 - Input from the saccular and utricle macules (linear acceleration)
 - Cristae of the semicircular canal (angular acceleration)

Vestibulocochlear Neuropathies

- **Vertigo**
 - Subjective sense of movement by the patient that is false
 - Caused by imbalance of vestibular tone
 - Labyrinth disease
 - Associated with nausea and vomiting usually

- **Ménière’s disease**
 - Episodic vertigo
 - Fluctuating sensorineural hearing loss
 - Low frequencies
 - Tinnitus
 - Usually unilateral

Neurofibromatosis I

- **AD**
- **Chromosome 17**
- **Protein: Neurofibromin**
- **Tumors**
 - Plexiform neurofibromas
 - Optic gliomas
 - High grade astrocytomas
- **Other**
 - Café-au-lait
 - Axillary / inguinal freckling
 - Iris hamartomas (Lisch nodules)

Neurofibromatosis II

- **AD**
- **Chromosome 22**
- **Protein: Merlin/Schwannomin**
- **Tumors**
 - Bilateral vestibular schwannomas
 - Meningiomas
 - Ependymomas
- **Other**
 - Cataracts
Vestibulocochlear Neuropathies

- Cogan’s syndrome
 - A chronic inflammatory disease seen mostly in young white males
- Symptoms
 - Bilateral sensorineural hearing loss
 - Progressive hearing loss with deafness in 2 years
 - Vestibular symptoms Ménière’s like
 - Inflammatory ocular manifestations (keratitis)
- Systemic symptoms
 - Seen in 30% of patients
 - Aortic, musculoskeletal complaints
- Evaluation
 - Clinical presentation-imaging often normal
- Treatment
 - Corticosteroids

Glossopharyngeal Nerve

- Anatomy
 - Shared by CN X also
- Function (categorized by nuclei)
 - Solitary nucleus
 - Taste and sensation in posterior 1/3rd of tongue
 - Carotid body (O2 sensor)
 - Carotid sinus (baroreceptor Bp)
 - Spinal nucleus of V
 - Postauricular skin, inner tympanic membrane
 - Mesencephalic nucleus of V
 - Sensory (proprioception), stylopharyngeus
 - Ambiguous nucleus
 - Motor innervates stylopharyngeal muscle (elevates pharynx)
 - Inferior salivatory nucleus
 - Stimulates parotid gland to release saliva

Glossopharyngeal Neuropathy

- Glossopharyngeal neuralgia
 - Clinical features
 - Unilateral stabbing, sharp paroxysmal pain
 - Abrupt severe pain in the throat, base of tongue or ear
 - Triggered by chewing, talking
 - May be associated with coughing, excessive salivation, hoarseness or syncope
 - Peak age 40-60
 - Treatment
 - Carbamazepine

Vagus Nerve

- Anatomy
 - Shared also by CNIX
- Function (categorized based on nuclei)
 - Spinal nucleus of V
 - Sensation to external ear, auditory canal and external surface of tympanic membrane
 - Solitary nucleus
 - Visceral sensation
 - Nucleus ambiguous
 - Motor to striated muscles
 - Sensory fibers from below the vocal cords recurrent laryngeal nerve
 - Dorsal motor nucleus of X
 - Motor to smooth muscles
Vagus Nerve

- Recurrent laryngeal nerve
 - Prone to injury throughout its course
 - Aneurysm of the aortic arch, subclavian artery, tracheal-bronchial lymph nodes, thyroidectomy
 - Rowland Payne syndrome: paralysis of the recurrent laryngeal, phrenic, vagal & laryngeal, phrenic, vagal & Horner’s 2’ breast CA
 - The left is longer & more likely to be injured

Glossopharyngeal and Vagus Nerve

- Syncope
 - Syncope may be the only symptom of metastatic involvement of CNs IX & X
 - Accompanies head and neck tumors, esp after recurrence
 - “Swallow syncope” assoc with esophageal CA
 - Pts report paroxysmal pain lasting seconds to 30 min

Glossopharyngeal and Vagus

- Lateral medullary syndrome
 - “Wallenberg Syndrome”
- Vessel: PICA/Vertebral Artery
- Location
 - Spinthalamic tract
 - Descending sympathetic tract
 - CN IX, X
 - Vestibular nuclei
- Clinical symptoms
 - Nystagmus, vertigo, N/V
 - Ipsilateral loss of pain/temp on face
 - Contralateral loss of pain/temp over the body
 - Ipsilateral hoarseness, dysphagia
 - Diminished gag, hoarseness, dysphagia

Spinal Accessory Nerve

- Function
 - Motor for sternocleidomastoid and trapezius muscles
- Pathway
 - Originates from medulla and spinal cord (C1-C6)
 - Fibers unite and ascend
 - Enter skull through foramen magnum
 - Exit skull through jugular foramen
 - Cranial portion joins the vagus to supply pharynx and larynx
 - Extra cranial portion supplies the sternocleidomastoid and trapezius
Spinal Accessory Neuropathies

- Jugular foramen syndrome
 - "Vernet’s syndrome"
 - Cranial nerves IX, X, XI pass through the foramen
 - Obstruction leads to
 - Ipsilateral trapezius and sternocleidomastoid paresis
 - Weakness turning head away from lesion and ipsilateral weak shoulder shrug
 - Dysphonia with palatal droop
 - Dysphagia with absent gag reflex
 - Loss of taste over posterior 1/3rd of tongue
 - Depressed sensation over posterior 1/3rd of tongue, soft palate, uvula, pharynx and larynx

- Winged scapula
 - Isolated spinal accessory neuropathy
 - Can occur with surgery, line placement (jugular cannulation), lymph node biopsy, tumor excision or trauma
 - The trapezius is required to rotate the scapula in order to elevate the arm above the horizontal
 - The arm can not be abducted above the horizontal
 - The upper portion of the scapula falls laterally, the inferior angle is drawn medially, and the vertebral border is flared
 - This is accentuated on attempted abduction

Hypoglossal Nerve

- Function
 - Movements of the tongue

- Pathways
 - Nucleus runs from pontine-medullary junction to caudal medulla
 - Rootlets unite and pass through hypoglossal canal

Hypoglossal Neuropathy

- Dejerine’s anterior bulbar syndrome
 - Occlusion of anterior spinal artery or its parent vertebral artery
 - 3 clinical features
 - Ipsilateral paresis, atrophy and fibrillations of the tongue
 - Protruded tongue deviates toward the lesion
 - Contralateral hemiplegia sparing the face
 - Contralateral loss of position and vibratory sensation (pain and temperature are spared)
Hypoglossal Neuropathy

- Collet-Sicard syndrome
 - Lesion damaging hypoglossal nerve and jugular foramen
 - 5 clinical features
 - Ipsilateral trapezius and sternocleidomastoid paralysis
 - Vocal cord and pharynx weakness
 - Hemiparalysis of the tongue
 - Loss of taste on posterior 1/3 of the tongue
 - Hemianesthesia of the palate, pharynx, larynx

Question 1: A 27-year-old female presents with six months of right shoulder weakness. She lost consciousness 6 months ago and landed on a radiator pipe, sustaining a burn injury to her right lateral neck. She can raise her arm to 90° but no higher. There is unilateral scapular winging with arms abducted. What is the affected muscle or muscles?
 A. Serratus anterior
 B. Trapezius
 C. Deltoid
 D. Rhomboid

Question 1: Explanation

- B. The trapezius. Scapular winging is a common question—and the long thoracic nerve/serratus anterior is the common answer. However, this patient sustained lateral neck trauma and cannot raise the arm greater than 90°. The spinal accessory nerve can be easily injured in the neck due to its superficial course. The trapezius helps stabilize & rotate the scapula.

Question 2: A 37-year-old male presents with left facial weakness involving the forehead and lower face and reduced taste sensation. Loud sounds are bothersome. What treatment should be offered?
 A. Aspirin 81 mg daily
 B. Acyclovir only
 C. Acyclovir and prednisone
 D. Prednisone only
Question 2: Explanation

D. The patient presents with typical features of Bell’s palsy. Two recent studies indicated that prednisone alone is superior to acyclovir or acyclovir & prednisone. Aspirin is not indicated

Treatment

- *N Engl J Med* (2007): In patients with Bell’s palsy, early treatment with prednisolone (25mg BID) significantly improves the chances of recovery at 3 & 9 months. There is no evidence of a benefit of acyclovir in combination with prednisolone.
- *Lancet Neurology* (2008): Prednisolone (60mg x5d then 10mg x5) shortened the time to complete recovery in patients with Bell’s, whereas valacyclovir did not affect facial recovery.

Question 3: Explanation

B. The tarsal muscle has sympathetic innervation. It contributes mildly to lid elevation (far less than the levator palpebrae innervated by the cranial nerve III). It can be injured anywhere along its path. In this particular case, the mechanism of injury was a right carotid dissection. Fibers that are responsible for eyelid elevation and pupil size reside on the ICA; fibers responsible for sweating are on the ECA.

Question 3: A 43 year old male presents with left-sided weakness and neglect. His examination is notable for mild right ptosis. Eyes are midposition. The right pupil is reduced in diameter compared to the left. What muscle is most likely involved?

A. Levator palpebrae
B. Tarsal (Müller’s muscle)
C. Orbicularis oris
D. Superior rectus

Question 4: A 73 year old male presents with right shoulder droop and weakness of head turning, difficulty swallowing, and softening of speech. He reports decreased taste sensation. There is unilateral palatal droop noted on examination. Where is the most likely site of injury?

A. Median midbrain
B. Rostral pons
C. Lateral medulla
D. Jugular foramen
Question 4:
Explanation

- D. The IX, X and XIth cranial nerves run together through the Jugular Foramen. Glomus jugulare tumors and basal skull fractures can injure all three CNs at this site.

Question 5:
A 41 year old Caucasian male presents for acute onset hearing loss. Examination is notable for bilateral keratitis and an ataxic gait. What is the most likely diagnosis?

A. Ramsay-Hunt syndrome
B. Tolosa-Hunt syndrome
C. Multiple sclerosis
D. Cogan’s syndrome

Question 5: Explanation

- D. Cogan’s syndrome is a chronic inflammatory disease. It is common in young white males.
- Symptoms include:
 - Bilateral sensorineural hearing loss (acute onset)
 - Progressive hearing loss up to deafness within 2yrs
 - Vestibular symptoms
 - Ménière disease
 - Inflammatory ocular manifestations (non-syphilitic interstitial keratitis)

Questions & Answers

The End